• 84a yf 5 a 0525 download kids

     

    84a yf 5 a 0525 download kids

    Name: 84a yf 5 a 0525 download kids
    Category: Downloads
    Published: glycipzarmo1970
    Language: English

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    http://hisrenigear1989.eklablog.com/aerosmith-miss-you-baby-mp3-download-a178604738

     


    This example demonstrates the effect of the Roughness parameter. Note how, as the Roughness increases, the material appears more "flat" and dusty. V-Ray Material | VRayMtl. Fog color – Specifies the attenuation of light as it passes through the material. This option allows the user to simulate the fact that thick objects look less transparent than thin objects. Note that the effect of the fog color depends on the absolute size of the objects and is therefore scene-dependent unless the Fog system units scaling is enabled. This parameter also determines the look of the object when using translucency. This parameter can be mapped with a texture in the Maps rollout. It is recommended that you use a 3D texture for the purpose. For more information, see the Fog Color example below. Opacity mode – Controls how the opacity map works. For more information, see the Opacity mode parameter example below. GI – When enabled, the self-illumination affects global illumination rays and allows the surface to cast light on nearby objects. Note, however, that it may be more efficient to use area lights or VRayLightMtl material for this effect. Phong – Phong highlight/reflections. Best used for plastic surfaces: Specular highlights have a bright center with no falloff. Blinn – Blinn highlight/reflections. Works for most common materials: Specular highlights have a bright center with a tight falloff. Ward – Ward highlight/reflections. Works well for cloth materials and chalk-like surfaces: Specular highlights have a bright center with a falloff broader than Blinn , but tighter than Microfacet GTR (GGX) . Microfacet GTR (GGX) – GGX highlight/reflections. B est used for metallic surfaces as well as the paint coat for cars: Specular highlights have a bright center with a longer falloff. Roughness – Used to simulate rough surfaces or surfaces covered with dust (for example, skin, or the surface of the moon). This parameter can be mapped with a texture in the Maps rollout. For more information, see the Roughness Parameter below. Affect channels – Allows the user to specify which channels will be affected by the reflection of the material. Useful for cloth materials and chalk-like surfaces. BRDF Rollout. Refraction Max depth = 2 Reflection Max depth = 5. RGlossiness/HGlossiness = 0.6. Fog color = Gray (243, 243, 243) Fog system units scaling = Off. Use glossiness / Use roughness – These options control how RGlossiness (reflection glossiness) is interpreted. When Use glossiness is selected, the RGlossiness value is used as is, and a high RGlossiness value (such as 1.0) will result in sharp reflection highlights. When Use roughness is selected, the RGlossiness inverse value is used. For example, if RGlossiness is set to 1.0 and Use roughness is selected, this will result in diffuse shading. Conversely, if RGlossiness is set to 0.0 and Use roughness is selected, this will result in sharp highlights. Note that the Roughness parameter itself has no bearing on the results of this option. Fresnel IOR – Specifies the IOR to use when calculating Fresnel reflections. Normally this is locked to the Refraction IOR parameter, but it can be unlocked for finer control. This parameter can be mapped with a texture in the Maps rollout. For more information, see the Fresnel Option example below. Reflection. Example: Refraction Exit Color. Roughness = 0.6. Glossiness – Controls the sharpness of refractions. A value of 1.0 means perfect glass-like refraction; lower values produce blurry or glossy refractions. Use the Subdivs parameter below to control the quality of glossy refractions. This parameter can be mapped with a texture in the Maps rollout. For more information, see the Refraction Glossiness example below. Fog multiplier = 0.5. IOR = 1.8. Currently, setting the Opacity mode to Clip also disables bump mapping within the material. A workaround is to load the opacity map through a VRayHDRI texture map and the bump mapping will render properly. Example: Reflection Glossiness. Abbe Number = Enabled, 10. Example: Roughness. RGlossiness/HGlossiness = 1.0 (perfect mirror reflections) Abbe Number = Enabled, 50. Example: Refraction Color. Reflect on back side – When enabled, reflections will be computed for back-facing surfaces too. Note that this affects total internal reflections too (when refractions are computed). Translucency – Selects the algorithm for calculating translucency (also called sub-surface scattering). Note that refraction must be enabled for this effect to be visible. Currently, only single-bounce scattering is supported. This example demonstrates the effect of the refraction Exit color parameter. This is mostly useful to show areas of deep refractions in the image, or for materials needing higher refraction depth. Note how the red areas are reduced when the Reflection Max depth and Refraction Max depth are increased. ||Material Editor window|| > Material/Map Browser > Materials > V-Ray > VRayMtl. None – No translucency is calculated for the material; Hard (wax) model – This model is specifically suited for hard materials like marble; Soft (water) model – This model is mostly for compatibility with older V-Ray versions (1.09.x); Hybrid model – This is the most realistic sss model and is suitable for simulating skin, milk, fruit juice and other translucent materials. This example demonstrates the usage of the Fog system units scaling check box. The teapot in the scene has a radius of four meters. When the Fog system units scaling is disabled we can see through the teapot. However when we enable the Fog system units scaling , the real size of the object is taken into consideration, and we can see that the light is absorbed to a much greater extent. Fresnel reflections – When enabled, the reflection strength becomes dependent on the viewing angle of the surface. Some materials in nature (glass, etc.) reflect light in this manner. Note that the Fresnel effect depends on the index of refraction as well. Fresnel reflections = Off. Glossiness = 0.8. This example demonstrates how the Reflect color parameter controls the reflectivity of the material. Note that this color also acts as a filter for the Diffuse color (e.g. stronger reflections dim the diffuse component). Subdivs – Controls the quality of glossy reflections. Lower values will render faster, but the result will be noisier. Higher values take longer but produce smoother results. Note that this parameter is available for changing only when Use local subdivs is enabled in the Global DMC Settings. Example: Refraction Glossiness. Scatter coeff – Specifies the amount of scattering inside the object. A value of 0.0 means rays will be scattered in all directions; A value of 1.0 means a ray cannot change its direction inside the sub-surface volume. Refraction Max depth = 4 Reflection Max depth = 5. Dim distance – Specifies the distance after which the reflection rays will not be traced. Max depth – Specifies the number of times a ray can be reflected. Scenes with lots of reflective and refractive surfaces may require higher values to look right. Gossiness = 0.9. IOR = 1.0. Fog. RGB – Causes dimming to be performed separately on the RGB components. For example, a pure white diffuse color and pure red reflection color will give a surface with cyan diffuse color (because the red component is already taken by the reflection). Monochrome – Causes dimming to be performed based on the intensity of the diffuse/reflection/refraction levels. Example: Refraction Depth. The VRayMtl is a very versatile material that allows for better physically correct illumination (energy distribution) in the scene, faster rendering, and more convenient reflection and refraction parameters. This material can be easily set up to simulate a huge variety of surfaces from plastics to metals to glass and more by adjusting a handful of parameters. Refract = White (255, 255, 255) This example demonstrates the effect of the Refract color parameter to produce glass materials. For the images in this example, the material has a gray Diffuse color, white Reflect color, and the Fresnel Reflections option is enabled. Cutoff – Specifies a threshold below which reflections/refractions will not be traced. V-Ray tries to estimate the contribution of reflections/refractions to the image, and if it is below this threshold, these effects are not computed. Do not set this to 0.0 as it may cause excessively long render times in some cases. Example: Fresnel Option. Color only – The reflection will affect only the RGB channel of the final render. Color+alpha – The material will transmit the alpha of the reflected objects instead of displaying an opaque alpha. All channels – All channels and render elements will be affected by the reflections of the material. Abbe number – Increases or decreases the dispersion effect. Enabling this option and lowering the value widens the dispersion and vice versa. For more information, see the Abbe Number example below. Example: Fog System Units Scaling. IOR – Specifies the index of refraction for the material, which describes the way light bends when crossing the material surface. A value of 1.0 means the light will not change direction. This parameter can be mapped with a texture in the Maps rollout. For more information, see the Refraction IOR example below. Fresnel reflections = Enabled Fresnel IOR = 1.3. This example demonstrates the effect of the Anisotropy and Rotation parameters, which determines the shape of the highlight. For the examples below the Type was set to Microfacet GTR (GGX) . Reflect = Black. (0, 0, 0) Trace reflections – When disabled, reflections will not be traced even if the reflection color is greater than black. This can be disabled to produce only highlights. Note that when disabling this parameter the diffuse color will not be dimmed by the reflection color, as would happen normally. Local axis – When enabled, the orientation of the anisotropic highlight is based on the object's local X, Y, or Z axis. Use irradiance map – When enabled, the irradiance map will be used to approximate diffuse indirect illumination for the material. When disabled, brute force GI will be used in which case the quality of the brute force GI is determined by the Subdivs parameter of the Irradiance Map . This can be used for objects in the scene which have small details and are not approximated very well by the irradiance map. RGlossiness – Reflection glossiness. Controls the sharpness of reflections. A value of 1.0 means perfect mirror-like reflection; lower values produce blurry or glossy reflections. Use the Subdivs parameter below to control the quality of glossy reflections. This parameter can be mapped with a texture in the Maps rollout. For more information, see the Reflection Glossiness example below. Fog bias – Changes the way the fog color is applied. Negative values make the thin parts of the objects more transparent and the thicker parts more opaque and vice-versa (positive numbers make thinner parts more opaque and thicker parts more transparent). IOR = 0.8. Fog color = White (255, 255, 255) no light absorption. IOR = 1.3. Glossy Fresnel – When enabled, uses glossy fresnel to interpolate glossy reflections and refractions. It takes the Fresnel equation into account for each "microfacet" of the glossy reflections, rather than just the angle between the viewing ray and the surface normal. The most apparent effect is less brightening of the grazing edges as the glossiness is decreased. With the regular Fresnel, objects with low glossiness may appear to be unnaturally bright and "glowing" at the edges. The glossy Fresnel calculations make this effect more natural. Refraction Exit color = On, Red (255, 0, 0) Reflection Max depth = 5 Refraction Max depth = 5. Double-sided – When enabled, V-Ray will flip the normal for back-facing surfaces with this material. Otherwise, the lighting on the outer side of the material will always be computed. This can be used to achieve a fake translucent effect for thin objects like paper. Best used for plastic surfaces. This example demonstrates the effect of the Refraction IOR parameter. Note how light bends more as the IOR deviates from 1.0. When the index of refraction (IOR) is 1.0, the render produces a transparent object. Note, however, that in the case of transparent objects, it might be better to assign an opacity map to the material rather than use refraction. Options Rollout. Env. priority – Determines the environment to use if a reflected or refracted ray goes through several materials, each of which has an environment override. Fresnel reflections = Enabled Fresnel IOR = 10.0. Best used for metallic surfaces as well as the paint coat for cars. Back-side color – Normally the color of the sub-surface scattering effect depends on the Fog color; this parameter allows you to additionally tint the SSS effect. Type: Phong. Fog multiplier = 1.0. Color Only – The transparency will affect only the RGB channel of the final render. Color+alpha – The material will transmit the alpha of the refracted objects instead of displaying an opaque alpha. Note that currently, this works only with clear (non-glossy) refractions. All channels – All channels and render elements will be affected by the transparency of the material. Self-Illumination. This example demonstrates the effect of the refraction Max depth parameter. Note how too low of a refraction depth produces incorrect results. Also, in the last two examples, note how areas with total internal reflection are also affected by the Reflection Max depth . Exit color – When enabled and a ray has reached the maximum refraction depth ( Max depth ), the ray will be terminated and the color specified here will be returned. When disabled, the ray will not be refracted but will be continued without changes. For more information, see the Refraction Exit Color example below. Subdivs – Controls the quality of glossy refractions. Lower values will render faster, but the result will be noisier. Higher values take longer but produce smoother results. This parameter also controls the quality of the translucent effect, if on (see below). Note that this parameter is available for changing only when Use local subdivs is enabled in the Global DMC Settings. Roughness = 0.0 (regular diffuse material) With all values set to 0 this gives isotropic highlights. Anisotropy = -0.8, Rotation = 0.0. Type: Microfacet GTR (GGX) BRDF parameters determine the type of the highlights and glossy reflections for the material. The parameters have an effect only if the reflection color is different from black and reflection glossiness is different than 1.0. Basic Parameters Rollout. Reflect = White. (255, 255, 255) Fwd/bck coeff – Controls the direction of scattering for a ray. A value of 0.0 means a ray can only go forward (away from the surface, inside the object); 0.5 means that a ray has an equal chance of going forward or backward; 1.0 means a ray will be scattered backward (towards the surface, to the outside of the object). Glossiness = 1.0. Refract – Specifies the amount of refraction and the refraction color. Any value above zero will enable refraction. Note that the actual refraction color depends on the Reflect color as well. This parameter can be mapped with a texture in the Maps rollout. For more information, see the Refraction Color example below. Furthermore, with the VRayMtl you can apply different texture maps, control the reflections and refractions, add bump and displacement maps, force direct GI calculations, and choose the BRDF for how light interacts with the surface material. Type – Determines the type of BRDF (the shape of the highlight). For more information, see the Type Example below. Multi-purpose BDRF suitable for many common materials . Example: Reflection Color. This example demonstrates the effect of the Fog multiplier parameter. Smaller values cause less light absorption because of the fog; while higher values increase the absorption effect. Translucency. Example: Type. ||V-Ray Toolbar|| > V-Ray Material button. Affect shadows – When enabled, this parameter will cause the material to cast transparent shadows to create a simple caustic effect dependent on the refraction color and the fog color. For accurate caustic calculations, disable this parameter and instead enable Caustics in the GI tab. Simultaneous usage of both Caustics and Affects Shadows can be used for artistic purposes but will not produce a physically correct result.This only works with V-Ray shadows and lights. This example demonstrates how the RGlossiness and HGlossiness parameters control the highlights and reflection blurriness of the material. Refraction Exit color = Off Reflection Max depth = 5 Refraction Max depth = 5. Page Contents. RGlossiness/HGlossiness = 0.8. Anisotropy = 0.0, Rotation = 0.0. Normal – The opacity map is evaluated as normal: the surface lighting is computed and the ray is continued for the transparent effect. The opacity texture is filtered as normal. Clip – The surface is shaded as either fully opaque or fully transparent depending on the value of the opacity map (i.e. without any randomness). This mode also disables the filtering of the opacity texture. This is the fastest mode, but it might increase flickering when rendering animations. Stochastic – The surface is randomly shaded as either fully opaque or fully transparent so that on average it appears to be with the correct transparency. This mode reduces lighting calculations but might introduce some noise in areas where the opacity map has gray-scale values. The opacity texture is still filtered as normal. Anisotropy – D etermines the shape of the highlight. A value of 0.0 means isotropic highlights. Negative and positive values simulate "brushed" surfaces. For more information, see the Anisotropy example below. Dim fall off – Specifies the fall off radius for the dim distance. Abbe Number = Disabled. Trace refractions – When disabled, refractions will not be traced even if the refraction color is greater than black. Affect Channels – Specifies which channels will be affected by the transparency of the material. Map channel – When enabled, the orientation of the anisotropic highlight is based on the specified map channel. Refraction Max depth = 1 Reflection Max depth = 5. Refraction Max depth = 8 Reflection Max depth = 8. Fog multiplier – Controls the strength of the fog effect. Smaller values reduce the effect of the fog, making the material more transparent. Larger values increase the fog effect, making the material more opaque. In more precise terms, this is the inverse of the distance at which a ray inside the object is attenuated with an amount equal to the Fog color . For more information, see the Fog Multiplier example below. Refraction Exit color = On, Red (255, 0, 0) Reflection Max depth = 8 Refraction Max depth = 8. Reflect = Medium Gray. (128, 128, 128) This example demonstrates the effect of the refraction Glossiness parameter. Note how lower refraction Glossiness values blur the refractions and cause the material to appear as frosted glass. Fog system units scaling – When enabled, the fog color attenuation becomes dependent on the current system units. For more information, see the Fog System Units Scaling example below. Overview. Effect ID – When enabled, specifies input values for Material ID for the override material effect. This page provides information on the V-Ray Material. The following examples demonstrate the different Types of BDRF. Example: Refraction IOR. Example: Fog Multiplier. Fog color = Green (230, 243, 213) HGlossiness – Highlight glossiness. Determines the shape of the highlight on the material. Normally this parameter is locked to the Reflection glossiness value in order to produce physically accurate results. This parameter can be mapped with a texture in the Maps rollout. GTR tail falloff – Controls the transition from highlighted areas to non-highlighted areas when the BRDF type is set to Microfacet GTR (GGX). Thickness – Limits the rays that will be traced below the surface. This is useful if the whole sub-surface volume does not need to be traced. Fresnel reflections = Enabled Fresnel IOR = 2.0. Fog multiplier = 1.5. Mult – Specifies a multiplier for the self-illumination effect. This is useful for boosting the self-illumination values so that the surface produces stronger illumination with GI. Roughness = 0.3. Anisotropy = -0.5, Rotation = 160.0. Preserve energy – Determines how the diffuse, reflection, and refraction color affect each other. V-Ray tries to keep the total amount of light reflected off a surface to be less than or equal to the light falling on the surface (as this happens in the real life). For this purpose, the following rule is applied: the reflection level dims the diffuse and refraction levels (a pure white reflection will remove any diffuse and refraction effects), and the refraction level dims the diffuse level (a pure white refraction color will remove any diffuse effects). This parameter determines whether the dimming happens separately for the RGB components or is based on the intensity. For more information, see the Energy Preservation Mode example below. This example demonstrates the effect of the Fog color parameter. Notice how the thick areas of the object are darker in the two images on the right because of the light absorption of the fog. Reflect – Specifies the amount of reflection and the reflection color. Note that the reflection color dims the diffuse surface color based on the Energy preservation mode option. This parameter can be mapped with a texture in the Maps rollout. For more information, see the Reflection Color example below. Refraction Max depth = 8 Reflection Max depth = 5. Refraction. Max depth – Specifies the number of times a ray can be refracted. Scenes with lots of refractive and reflective surfaces may require higher values to look right. For more information, see the Refraction Depth example below. Refract = Black (0, 0, 0) No refraction is produced. Light multiplier – Specifies a multiplier that controls the strength of the translucent effect. This example demonstrates the effect of the Fresnel reflections option. Note how the strength of the reflection varies with the Fresnel IOR of the material. For this example, the Reflect color is pure white (255, 255, 255). Example: Fog Color. Diffuse – Specifies the diffuse color of the material. Note the actual diffuse color of the surface also depends on the Reflect and Refract colors. This parameter can be mapped with a texture in the Maps rollout. See the Energy preservation parameter below. Example: Anisotropy. Example: Abbe Number. Refract = Light Gray (192, 192, 192) Fog system units scaling = On. Self-Illumination – Controls the emission of the surface. This parameter can be mapped with a texture in the Maps rollout. This example demonstrates the dispersion capabilities of the V-Ray material and the effect of the Abbe number parameter. Rotation – Determines the orientation of the anisotropic effect in a float value between 0 and 1 (where 0 is 0 degrees and 1 is 360 degrees).

     

     

    http://mebbalepyt1972.eklablog.com/81865gme-775-drivers-download-windows-7-a178595280

  • Comments

    No comments yet

    Suivre le flux RSS des commentaires


    Add comment

    Name / User name:

    E-mail (optional):

    Website (optional):

    Comment: